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LANL Stewards Much of the U.S. Nuclear Stockpile

• We are the design agency for four of seven weapons systems in the national arsenal

• We are responsible for the safety, surety, and reliability of these systems

W78 land-based warhead B61 aircraft-carried bomb W76/W88 sub-based warheads

Since 1992, we have performed our mission without nuclear testing
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Nuclear Weapons Release Nuclear Binding Energy

• Both heavy-nuclei fission and light-nuclei fusion release energy

• Fission releases ∼ 200 MeV per fission event

– Example: n+235U →236U →92Kr +141Ba +3n

– Note that additional neutrons are produced, inducing further fissions

• Fusion produces 17.6 MeV per fusion (for D+T)

– Example: D + T →4He +n

• Compare to chemical reactions that release eV’s per reaction event
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Early Nuclear Weapons Used Only Fission

• Function by creating a super-critical mass (neutron leakage rate < production rate)

• Two technologies were developed by LANL during the Manhattan Project

• Gun weapon assembles sub-critical pieces of fissile material into super-critical mass

• Implosion weapon compresses sub-critical piece of fissile material into super-critical
mass
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Little Boy Was the First Gun-Assembled Weapon

• Simple design (no proof test required)

• Limited to 235U to avoid pre-initiation

• Inefficient use of nuclear material

• Hiroshima – August 6, 1945

• Yield of 15 kt
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Trinity/Fat Man Was the First Gun-Assembled Weapon

• Complex design using precision explosives

• Can use 235U or 239Pu

• Efficient use of nuclear material

• Trinity – July 16, 1945

• Nagasaki – August 9, 1945

• Yield of 21 kt
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Modern Weapons are Thermonuclear

• Thermonuclear weapons have two physically separate stages: primary and secondary

• The primary fission stage goes off first, followed by the secondary stage

• X-ray energy produced by the primary stage heats and compresses the secondary stage

• The device produces energy by fission and fusion

• Much higher yields possible
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Ivy/Mike Was the First Thermonuclear Test

• Experimental device

• Used liquid D2 as TN fuel

• Not suitable as a weapon

• Enewetok – October 31, 1952

• Yield of 10.4 Mt
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Castle/Bravo Was the Largest U.S. Nuclear Test

• Bikini – February 28, 1954

• Predicted yield of 6 MT

• Actual yield of 15 Mt
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World Record for Largest Nuclear Test Held by USSR

• “Tsar Bomba”

• Novaja Zemlya – October 30, 1961

• Design Yield 100 Mt

• Tested at reduced yield of 58 Mt

Atmospheric testing was banned by treaty in 1963
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Current U.S. Stockpile Was Designed for Cold War

• Designed for maximum yield in minimum size and weight

– Highly optimized

• Intended to be replaced after 15–20 years

– Now well past original design life

• Use hazardous materials

– Expensive and difficult to handle today

• Very complex, with many parts

– Challenging to maintain without nuclear testing
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B61 Nuclear Bomb has More Than 4000 Parts
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Why is Maintaining the Stockpile So Hard?

• Operating conditions of a nuclear weapon exist nowhere else and cannot

be fully replicated in a lab setting

– Temperatures > 108 K

– Material velocities > 106 m/s

– Pressures > 107 bar

– Time scales < 10−8 s

• We have developed a science-based method to stewarding the stockpile

– Use large-scale multi-physics simulations to predict weapon performance

– Perform small-scale experiments to continuously improve our understanding of the
relevant physics

– Validate the simulations against legacy test data and integrated non-nuclear and
sub-critical experiments

• We also have a surveillance to monitor for unexpected changes
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Computer Simulations of Nuclear Weapons

• We use computational models
– High explosive burn

– Radiation/Hydrodynamics

– Neutronics

– Thermonuclear burn

• Incorporating physical data
– Neutron cross sections

– Equation of state

– Opacities

• Running on high-performance computers
– World’s first computer > 1 Petaflop

– LANL is part of the Exascale Computing Project
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We Compare Our Simulations to Legacy Test Data

1054 nuclear tests (24 joint with UK)
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Dual-Axis Radiographic Hydrodynamic Test Facility

• DARHT provides two beams of high-energy pulsed x-rays

• Allows testing the dynamics of implosions using non-nuclear components as a function
of time

• These experiments are a critical part of validating our simulations

16



Sub-Critical Experiments Study Nuclear Materials

• Conducted underground at the Nevada National Security Site (formerly NTS)

– The experiments are performed at a depth of 300 m to contain any radioactive release

• We can test the initial stages of implosion using plutonium

– The amount of plutonium is reduced to avoid criticality

• Dynamic plutonium experiments provide important information on this material
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High-Energy X-Rays and Laser Probes Provide Data

• Measure properties such as

– Equations-of-state

– Cavity formation and strength

– Spall and damage

– Ejecta

– Material properties of aged versus new plutonium

– Material properties of cast versus wrought plutonium

– Metallurgy and its effects on other dynamic properties
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Example Radiographic Images

• Experiment designed to test reproducibility of dynamic experiments

• Two identical packages with non-nuclear materials were shot simultaneously

• High explosives drove shock through material from the bottom
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Multi-Point Photon Doppler Velocimetry

• Multiple laser beams allow velocity measurements of material at multiple points

• Doppler shift of beam reflecting from moving surface gives velocity

• Provides a rich data set (3M velocities) to compare to simulations
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Small-Scale Experiments

Experiments improve the science behind nuclear weapons
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Proton Radiography Studies Dynamic Materials

• pRad uses 800 MeV proton beam to image dynamic experiments

• Beam can be pulsed to provide 40 images ≥ 100ns apart

• Images are analyzed to provide density information as a function of position and time
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pRad Uses Multiple Coulomb Scattering
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pRad Example: Melting and Solidification of Al-In Alloy
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pRad Example: Instability Growth

• Shock applied to two materials with different densities
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Precision Measurements of Nuclear Cross Sections

• The 239Pu(n, f) cross section affects nuclear weapons performance

• Spread in existing data sets suggests uncontrolled or unaccounted for systematic
uncertainties

• Lawrence Livermore National Laboratory and LANL are measuring this cross section
at LANSCE to 1% precision
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Experimental Facilities to Study Radiation Flow
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Summary

• Maintaining the U.S. nuclear stockpile without nuclear testing is very

challenging

• We use a variety of science-based tools to perform this mission

• Large-scale multi-physics simulations running on high-performance com-

puters have replaced nuclear testing

• Experimental data is crucial to calibrate and validate the simulations

– Data from legacy nuclear tests

– Large-scale integrated experiments

– Sub-critical experiments

– Small-scale experiments

• Many scientific disciplines contribute to maintaining the stockpile
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